

September 3, 1992

Danil Hancock Port of Portland Box 3529 Portland, OR 97208

Re: Berth 501 Dredging Project

Dear Danil:

Enclosed are the results of the samples submitted to our lab on August 14, 1992. Preliminary results were transmitted via facsimile on August 24, 25, and 28, and on September 1, 1992. For your reference, these analyses have been assigned our work order number K925054.

All analyses were performed in accordance with our laboratory's quality assurance program. Reproduction of reports is allowed only in whole, not in part. Results apply only to the samples analyzed.

Please call if you have any questions.

Respectfully submitted,

Columbia Analytical Services, Inc.

Othe Ghelman Abbie Spielman Project Chemist

AS/eaw

9 3 ED 88

T-S Brodgy

USEPA SF

Analytical Report

Client:

Port of Portland

Project:

Berth 501 Dredging

Sample Matrix:

Sediment

Date Received:

08/14/92

Date Analyzed:

08/20/92

Work Order No.: K925054

Solids, Total **EPA Method Modified 160.3** Percent (%)

Sample Name	Lab Code	Result
B501892-1	K5054-1	65.9
B501892-2	K5054-2	61.1

allie Spelman

Analytical Report

Client:

Port of Portland

Project:

Berth 501 Dredging

Sample Matrix:

Sediment

Date Received:

08/14/92

Date Analyzed:

08/24/92

Work Order No.:

K925054

Solids, Total Volatile **EPA Method Modified 160.4** Percent (%)

Sample Name	Lab Code	Result
B501892-1	K5054-1	3.38
B501892-2	K5054-2	6.87

Analytical Report

Client:

Port of Portland

Project:

Berth 501 Dredging

Sample Matrix:

Sediment

Date Received:

08/14/92

Work Order No.: K925054

Total Metals mg/Kg (ppm) **Dry Weight Basis**

Sample Name: Lab Code:		B501892-1 K5054-1	B501892-2 K5054-2	Method Blank K5054-MB	
Analyte	EPA Method	MRL			
Antimony	200.8	0.05	ND	0.17	ND
Arsenic	200.8	0.05	1.93	5.60	ND
Cadmium	200.8	0.01	0.10	1.29	ND
Chromium	6010	2	14	27	ND
Copper	6010	2 .	12	34	ND
Lead	200.8	0.05	3.92	28.8	ND
Mercury	7471	0.02	ND	0.15	ND
Nickel	200.8	0.1	13.4	18.0	ND
Silver	200.8	0.01	0.06	0.22	ND
Zinc	6010	2	49	175	ND.
Solids Total (%)	160.3		64.0	50.8	

MRL

Method Reporting Limit

ND

None Detected at or above the method reporting limit

arrie Amelina

Analytical Report

Client:

Port of Portland

Project:

Berth 501 Dredging

Sample Matrix:

Sediment

Date Received:

08/14/92

Work Order No.:

K925054

Particle Size Determination ASTM Method Modified D 422

Sample Name:

B501892-1

Lab Code:

K5054-1

Sand Fraction (Grams):

7.5177

Sand Fraction Wt. Recovered (Grams):

7.1410

Sand Fraction % Recovery:

95.0

Weight as Received (Grams)	26.7111
Percent Solids	63.7
Weight Oven-Dried (Grams)	17.0150

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Wt. Recovered
Medium Gravel	4.75 mm	4	0	0.00
Fine Gravel	2.00 mm	10	0.1831	1.08
Very Coarse Sand	0.850 mm	20	0.1047	0.62
Coarse Sand	0.425 mm	40	*0.0563	0.33
Medium Sand	0.250 mm	60	0.1986	1.17
Fine Sand	0.106 mm	140	3.3067	19.4
Very Fine Sand	0.075 mm	200	2.0728	12.2
Clay		!	1.9050	11.2
Silt			8.8450	52.0
		Total	16.6722	98.0

Organic matter present

Approved by

Spelma

Date 9/3/92

Analytical Report

Client:

Port of Portland

Project:

Berth 501 Dredging

Sample Matrix: Sediment

Date Received:

08/14/92

Work Order No.:

K925054

Particle Size Determination **ASTM Method Modified D 422**

Sample Name:

B501892-1

Lab Code:

K5054-1Dup

Sand Fraction (Grams):

8.0462

Sand Fraction Wt. Recovered (Grams):

8.0528

Sand Fraction % Recovery:

Weight as Received (Grams)	29.9071
Percent Solids	63.7
Weight Oven-Dried (Grams)	19.0508

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Wt. Recovered
Medium Gravel	4.75 mm	4	0	0.00
Fine Gravel	2.00 mm	10	0.0924	0.49
Very Coarse Sand	0.850 mm	20	0.0997	0.52
Coarse Sand	0.425 mm	40	0.0441	0.23
Medium Sand	0.250 mm	60	0.1845	0.97
Fine Sand	0.106 mm	140	3.7445	19.7
Very Fine Sand	0.075 mm	200	2.7164	14.3
Clay		·	2.1500	11.3
Silt			9.8400	51.6
· · · · · · · · · · · · · · · · · · ·		Total	18.8716	99.1

Analytical Report

Client: Project:

Port of Portland Berth 501 Dredging

Sample Matrix:

Sediment

Date Received:

08/14/92

Work Order No.:

K925054

Particle Size Determination ASTM Method Modified D 422

Sample Name:

B501892-1

Lab Code:

K5054-1Trip

Sand Fraction (Grams):

7.5001

Sand Fraction Wt. Recovered (Grams):

7.5131

Sand Fraction % Recovery:

100

Weight as Received (Grams)	27.0842
Percent Solids	63.7
Weight Oven-Dried (Grams)	17.2526

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Wt. Recovered
Medium Gravel	4.75 mm	4	0	0.00
Fine Gravel	2.00 mm	10	0.1475	0.85
Very Coarse Sand	0.850 mm	20	0.0339	0.20
Coarse Sand	0.425 mm	40	0.0298	0.17
Medium Sand	0.250 mm	60	0.1504	0.87
Fine Sand	0.106 mm	140	3.3612	19.5
Very Fine Sand	0.075 mm	200	2.4709	14.3
Clay			1.9350	11.2
Silt			9.2300	53.5
		Total	17.3587	100

Approved by_

ahi Spieln

Date 9/3/92

Analytical Report

Client:

Port of Portland

Project:

Berth 501 Dredging

Sample Matrix:

Sediment

Date Received:

08/14/92

Work Order No.: K925054

Particle Size Determination **ASTM Method Modified D 422**

Sample Name:

B501892-2

Lab Code:

K5054-2

Sand Fraction (Grams):

7.5102

Sand Fraction Wt. Recovered (Grams):

7.4953

Sand Fraction % Recovery:

99.8

Weight as Received (Grams)	28.8511
Percent Solids	64.3
Weight Oven-Dried (Grams)	18.5513

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Wt. Recovered
Medium Gravel	4.75 mm	4	0	0.00
Fine Gravel	2.00 mm	10	0.0342	0.18
Very Coarse Sand	0.850 mm	20	*0.0545	0.29
Coarse Sand	0.425 mm	40	*0.5113	2.76
Medium Sand	0.250 mm	60	3.1398	16.9
Fine Sand	0.106 mm	140	2.0455	11.0
Very Fine Sand	0.075 mm	200	1.2430	6.70
Clay			1.5800	8.52
Silt			9.8200	52.9
i		Total	18.4283	99.2

Organic matter present

Client:

Port of Portland

Project:
Sample Matrix:

Berth 501 Dredging

Sediment

Date Received:

08/14/92

Date Extracted: Work Order No.:

08/19/92 K925054

Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) EPA Methods 3550/8080 (Low Level) mg/Kg (ppm) Dry Weight Basis

Sample Name: Lab Code: Date Analyzed:	14 1	B501892-1 K5054-1 08/26/92	Method Blank K5054-MB 08/26/92
Analyte	MRL		
Alpha-BHC	0.001	ND	ND
Gamma-BHC (Lindane)	0.001	ND ·	ND
Beta-BHC	0.003	ND	ND
Heptachlor	0.001	ND	ND
Delta-BHC	0.001	· ND	ND
Aldrin	0.001	ND	ND
Heptachlor Epoxide	0.001	ND	ND
Endosulfan I	0.001	ND	ND
4,4'-DDE	0.001	ND	ND
Dieldrin	0.001	ND	ND
Endrin	0.001	ND	ND
4,4'-DDD	0.001	ND	ND
Endosulfan II	0.001	ND	ND
4,4'-DDT	0.001	ND	ND
Endrin Aldehyde	0.001	ND	ND
Endosulfan Sulfate	0.001	ND	ND
Methoxychlor	0.002	ND	ND
Toxaphene	0.03	ND	ND
Chlordane	0.01	ND	ND
PCBs: Aroclor 1016	0.01	ND	ND
Aroclor 1221	0.01	ND	ND
Aroclor 1232	0.01	ND	ND
Aroclor 1242	0.01	ND	ND
Aroclor 1248	0.01	ND	ND
Aroclor 1254	0.01	ND	ND
Aroclor 1260	0.01	ND	ND

MRL

Method Reporting Limit

ND

None Detected at or above the method reporting limit

Approved by

mi Spelman

Date 9/3/92

Port of Portland

Sample Matrix:

Berth 501 Dredging

Sediment

Date Received:

08/14/92

Date Extracted: 08/3

08/25/92

Work Order No.: K925054

Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs)
EPA Methods 3550/8080 (Low Level)
mg/Kg (ppm)
Dry Weight Basis

Sample Name: Lab Code: Date Analyzed:		B501892-2 K5054-2 08/27/92	Method Blank K5054-MB 08/27/92
Analyte	MRL		
Alpha-BHC	0.001	ND	ND
Gamma-BHC (Lindane)	0.001	ND	ND
Beta-BHC	0.003	ND	ND
Heptachlor	0.001	ND	ND
Delta-BHC	0.001	ND	ND
Aldrin	0.001	ND	ND
Heptachlor Epoxide	0.001	ND	ND
Endosulfan I	0.001	ND	ND
4,4'-DDE	0.001	0.002	ND
Dieldrin	0.001	ND	ND
Endrin	0.001	ND	ND
4,4'-DDD	0.001	0.002	ND
Endosulfan II	0.001	ND	ND
4,4'-DDT	0.001	0.002	ND
Endrin Aldehyde	0.001	ND	ND
Endosulfan Sulfate	0.001	ND	ND
Methoxychlor	0.002	ND	ND
Toxaphene	0.03	ND	ND
Chlordane	0.01	ND	ND
PCBs: Aroclor 1016	0.01	ND	ND
Aroclor 1221	0.01	ND	ND
Aroclor 1232	0.01	ND	ND
Aroclor 1242	0.01	ND	. ND
Aroclor 1248	0.01	ND	ND
Aroclor 1254	0.01	ND	ND
Aroclor 1260	0.01	, ND	ND

MRL

Method Reporting Limit

ND

None Detected at or above the method reporting limit

Approved by

Whe Appelman

Date

13/92

Client: Project: Port of Portland Berth 501 Dredging

Sample Matrix:

Date Received: Work Order No.:

08/14/92 K925054

Sediment

Volatile Organic Compounds EPA Method 8240 (Low Level) μg/Kg (ppb) Dry Weight Basis

Sample Name: Lab Code: Date Analyzed:		B501892-1 K5054-1 08/19/92	B501892-2 K5054-2 08/19/92	
Analyte	MRL*			
Trichloroethene (TCE)	10	ND	ND	
Tetrachloroethene (PCE)	10	, ND	ND	
Ethylbenzene	10	ND~··	ND	
Total Xylenes	10	ND	ND	
1,3-Dichlorobenzene	10	ND	ND	
1,4-Dichlorobenzene	10	ND	ND	
1.2-Dichlorobenzene	10	ND	ND	

MRL

Method Reporting Limit

MRLs are elevated because of matrix interferences.

ND

None Detected at or above the method reporting limit

Client: Project: Port of Portland Berth 501 Dredging

Sample Matrix:

Sediment

Work Order No.: K925054

Volatile Organic Compounds EPA Method 8240 (Low Level) μg/Kg (ppb) Dry Weight Basis

Sample Name: Lab Code:		Method Blank K5054-MB	
Date Analyzed:		08/19/92	
Analyte	MRL		
Trichloroethene (TCE)	5	· ND	
Tetrachloroethene (PCE)	5	ND	
Ethylbenzene	5	ND	
Total Xylenes	5	· ND	
1,3-Dichlorobenzene	5	. ND	
1,4-Dichlorobenzene	5	ND.	
1 2-Dichlorobenzene	5	ND	

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

Approved by a Me Appelman

Date 9/3/92

Analytical Report

Client: **Project:** Port of Portland

Sample Matrix:

Berth 501 Dredging

Sediment

Date Received:

08/14/92

Date Extracted:

08/19/92

Date Analyzed:

08/24/92

Work Order No.:

K925054

Phthalate Esters and Polynuclear Aromatic Hydrocarbons EPA Method 3550 in combination with GC/MS SIM Method μ g/Kg (ppb) Dry Weight Basis

Sample Name: Lab Code:		B501892-1 K5054-1	Method Blank K5054-MB
Analyte	MRL		
Dimethyl Phthalate	20	ND	ND
Naphthalene	20	ND	ND
2-Methylnaphthalene	20	ND	ND
Acenaphthylene	20	ND	ND
Dibenzofuran	20	ND	ND
Diethyl Phthalate	20	ND	ND
Acenaphthene	20	ND	ND
Fluorene	20	ND	ND
Phenanthrene	20	ND	ND
Anthracene	20	. ND	ND
Di-n-butyl Phthalate	20	ND	ND
Fluoranthene	20	ND	ND
Pyrene	20	20	ND
Benz(a)anthracene	20	ND	ND
Chrysene	20	ND	ND
Butylbenzyl Phthalate	20	ND	ND .
Benzo(b + k)fluoranthene	40	ND	ND
Benzo(a)pyrene	20	ND	ND
Indeno(1,2,3-cd)pyrene	20	ND	ND
Dibenz(a,h)anthracene	20	ND	ND
Benzo(g,h,i)perylene	20	ND	ND
Bis(2-ethylhexyl) Phthalate	20	* 72	ND
Di-n-octyl Phthalate	20	ND	ND

SIM Selected Ion Monitoring MRL **Method Reporting Limit**

None Detected at or above the method reporting limit ND

These compounds coelute; therefore, the results are reported as the combined concentration.

Result is from the analysis of a diluted sample, performed on August 25, 1992.

Analytical Report

Client: Project: Port of Portland

Sample Matrix:

Berth 501 Dredging Sediment

Dete

Date Received: 08/14/92

Date Extracted:

08/19/92

Date Analyzed: Work Order No.:

08/24/92 K925054

Phthalate Esters and Polynuclear Aromatic Hydrocarbons EPA Method 3550 in combination with GC/MS SIM Method μ g/Kg (ppb) Dry Weight Basis

Sample Name: Lab Code: B501892-2 K5054-2

Analyte	MRL*	
Dimethyl Phthalate	50	ND
Naphthalene	50	NĐ
2-Methylnaphthalene	50	ND
Acenaphthylene	50	ND
Dibenzofuran	50	NĐ
Diethyl Phthalate	50	ND
Acenaphthene	50	ND
Fluorene	50	ND
Phenanthrene	50	74
Anthracene	50	ND
Di-n-butyl Phthalate	50	ND
Fluoranthene	50	74
Pyrene	50	83
Benz(a)anthracene	50	ND
Chrysene	50	ND
Butylbenzyl Phthalate	50	ND
Benzo(b + k)fluoranthene	100	ND
Benzo(a)pyrene	50	ND
Indeno(1,2,3-cd)pyrene	50	ND
Dibenz(a,h)anthracene	50	ND
Benzo(g,h,i)perylene	50	ND
Bis(2-ethylhexyl) Phthalate	50	220
Di-n-octyl Phthalate	50	ND

SIM Selected Ion Monitoring MRL Method Reporting Limit

* MRLs are elevated because of matrix interferences and because the sample(s) required diluting.

ND None Detected at or above the method reporting limit

These compounds coelute; therefore, the results are reported as the combined concentration.

Approved by all Appleman

Date 9/3/92

Analytical Report

Client: Project: Port of Portland

Sample Matrix:

Berth 501 Dredging

Sediment

Date Received:

08/14/92

Date Extracted:

08/26/92

Date Analyzed:

08/31/92

Work Order No.:

K925054

Phenols EPA Method 3550 in combination with GC/MS SIM Method μ g/Kg (ppb) Dry Weight Basis

Sample Name: Lab Code:	*B501892-2 K5054-2	
Analyte	MRL**	
Phenol	50	ND
2-Methylphenol	50	ND
3- and 4-Methylphenol	.50	ND
2,4-Dimethylphenol	50	ND
Pentachlorophenol	130	ND

SIM Selected Ion Monitoring

* Sample was extracted two days past the end of the recommended maximum holding time. Initial analysis, performed within the recommended maximum holding time, failed CAS QC criteria. The reanalysis met our QC criteria. It is the opinion of CAS that the quality of the sample data has not been significantly affected.

MRL Method Reporting Limit

** MRLs are elevated because of matrix interferences and because the sample(s) required diluting.

ND None Detected at or above the method reporting limit

Quantified as 4-methylphenol.

Approved by alle Aprelman

_Date__9/3/92__

Analytical Report

Client:

Port of Portland

Project:

Berth 501 Dredging

Sample Matrix:

Sediment

Date Received:

08/14/92

Date Extracted:

08/19/92

Date Analyzed:

08/25/92

Work Order No.:

K925054

Phenols EPA Method 3550 in combination with GC/MS SIM Method μ g/Kg (ppb) Dry Weight Basis

Sample Name: Lab Code:		*B501892-1 K5054-1	Method Blank K5054-MB
Analyte	MRL	•	•
Phenol	20	ND	ND
2-Methylphenol	20	ND	ND
3- and 4-Methylphenol®	20	ND ·	ND
2,4-Dimethylphenol	20	ND	ND
Pentachlorophenol	50	ND	ND

SIM Selected Ion Monitoring

This extraction batch did not meet QC criteria for acid compounds. Insufficient sample quantity remained for additional analysis. Data reported here should be considered as estimated values.

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

Quantified as 4-methylphenol.

Approved by alle Aprelman

_Date_9/3/92

Analytical Report

Client: Project: Port of Portland Berth 501 Dredging

Sample Matrix:

Sediment

Date Extracted: Date Analyzed:

08/26/92

Date Analyzed: Work Order No.:

08/31/92 K925054

Phenols EPA Method 3550 in combination with GC/MS SIM Method μ g/Kg (ppb) Dry Weight Basis

Sample Name: Lab Code:	Method Blank K5054-MB	
Analyte	MRL	
Phenol	. 20	ND
2-Methylphenol	20	ND
3- and 4-Methylphenol •	20	ND
2,4-Dimethylphenol	20	ND
Pentachlorophenol	50	ND

SIM Selected Ion Monitoring MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

Quantified as 4-methylphenol.

Approved by alie Appelman

APPENDIX A LABORATORY QC RESULTS

QA/QC Report

Client: Project: Port of Portland Berth 501 Dredging

Sample Matrix:

Sediment

Date Received:
Date Extracted:

08/14/92 08/19/92

Date Analyzed:

08/26/92

Work Order No.: K925054

Surrogate Recovery Summary Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) EPA Methods 3550/8080

Sample Name	Lab Code	Tetrachloro-m-xylene	Decachlorobiphenyl
B501892-1	K5054-1	60	•42
Method Blank	K5054-MB	92	81
•			
	·		·
•	CAS Acceptance Criteria	45-112	53-120

* Outside of acceptance limits because of matrix interferences. The chromatogram showed nontarget components that interfered with the analysis.

Approved by ame Appelman

Date $\frac{9/3/92}{}$

QA/QC Report

Client: **Project:** Port of Portland

Sample Matrix:

Berth 501 Dredging Sediment

Date Received:

08/14/92

Date Extracted: Date Analyzed:

08/25/92 08/27/92

Work Order No.:

K925054

Surrogate Recovery Summary Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) **EPA Methods 3550/8080**

	Sample Name	Lab Code	Percent Tetrachloro- <i>m</i> -xylene	Recovery Decachlorobiphenyl
)	B501892-2 Method Blank	K5054-2 K5054-MB	82 92	60 67

CAS Acceptance Criteria

45-112

53-120

QA/QC Report

Client:

Port of Portland

Project:

Berth 501 Dredging

Sample Matrix:

Sediment

Date Received:

08/14/92

Date Analyzed: Work Order No.:

08/19/92 K925054

Surrogate Recovery Summary Volatile Organic Compounds EPA Method 8240 (Low Level)

Sample Name	Lab Code	Percent Recovery		
		1,2-Dichloroethane - D ₄	Toluene - D ₈	4-Bromofluorobenzene
501892-1	K5054-1	112	100	97
· • • • • • • • • • • • • • • • • • • •	K5054-2	*24	100	89
501892-2 Method Blank	K5054-MB	**130	101	104
	EPA Acceptance Criteria	70-121	84-138	59-113

Outside of acceptance limits because of matrix effects. This sample was analyzed a second time, and again produced unacceptable recovery values. The results from the initial analysis are reported.

Outside of acceptance limits. Since the elevated percent recovery is for the method blank, and since the percent recovery for all of the associated samples is acceptable, it is the opinion of CAS that the quality of the sample data has not been significantly affected.

Approved by

ame

o~

Date 9/3/97

00020

hann 206/577-7222 • Fay 206/636-40

QA/QC Report

Client:

Port of Portland

Project:

Berth 501 Dredging

Sample Matrix:

Sediment

Date Received:

08/14/92

Date Extracted:

08/19/92

Date Analyzed:

08/24/92

Work Order No.:

K925054

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons EPA Method 3550 in combination with GC/MS SIM Method

Sample Name	Lab Code	Percent Recovery		
		Naphthalene - D ₈	Fluorene - D ₁₀	Chrysene - D ₁₂
B501892-1	K5054-1	49	80	86
B501892-2	K5054-2	* 65	* 96	* 92
Method Blank	K5054-MB	62	. 82	107

SIM Selected Ion Monitoring

Analyte concentration is an estimate because the result was below the instrument calibration range and below the sample MRL.

QA/QC Report

Client:

Port of Portland

Project:

Berth 501 Dredging

Sample Matrix: Sediment

Date Received:

08/14/92

Date Extracted:

08/19/92

Date Analyzed:

08/25/92

Work Order No.: K925054

Surrogate Recovery Summary Phenois EPA Method 3550 in combination with GC/MS SIM Method

Sample Name	Lad Code			2,4,6-Tribromophenol		
B501892-1	K5054-1	*<5	* <5	* <5		
Method Blank	K5054-MB	52	**<5	16		

SIM Selected Ion Monitoring

Outside of acceptance limits. Insufficient sample quantity remained for additional analysis.

Outside of acceptance limits.

QA/QC Report

Client: Project: Port of Portland

Berth 501 Dredging

Sample Matrix: Sediment

Date Received:

08/14/92

Date Extracted:

08/26/92

Date Analyzed: Work Order No.:

08/31/92 K925054

Surrogate Recovery Summary **Phenols** EPA Method 3550 in combination with GC/MS SIM Method

Sample Name	Lab Code	Percent Recovery										
		2-Fluorophenol	Phenol - D ₆	2,4,6-Tribromophenol								
B501892-2	K5054-2	*74	* 70	* 92								
Method Blank	K5054-MB	63	67	67								

SIM Selected Ion Monitoring

Analyte concentration is an estimate because the result was below the instrument calibration range and below the sample MRL.

APPENDIX B CHAIN OF CUSTODY INFORMATION

			🚅 e de de servicio de la completa del completa de la completa del completa de la completa del la completa de la completa del la complet		
	, '	<u> </u>		CHAIN OF CUSTO	RECO
ON THE PROPERTY OF THE PROPERT	· Van				
- AND THE PROPERTY OF THE PROP	-	-			

			•		.								: تمصیعی										C	HAIN OF CUSTC	RECORD
OMPA	NY Jai L		<i>f</i> ;	Portland	P	ROJE	CT NA	ME L	Sest	4	50	2/	. <i>is</i>	Pica	lac.				_	LAB P	ROJE	CT NO			
				Hincock				JMBER							_		<u>i</u>								
OLLE	TEO BY	Jan.	1/4-	rock	P	.O. N	JMBE	R												RUSH	(YES .	NC D		
MMC	NTS Buth 50	1 - C.	114-1	in Gai Euff.		AMDI	E	CEIVE) A T A	·^	<u> </u>	٧٤٥	<u> </u>	NIO.					Τ	BBOV	חב ענ	EDDAL DESIN	21	Z YES NO	
معرا مري	as Entre	10:01	* Ko)	in Gain Eufli Certini ! . to				APPRO							ES (Ü N	0		1					TYES O NO	
					T			<u> </u>							ANAI	YSE	S TO) BE	PER	FOR	MED				
		4			-	MATR	IX		ILES									SES	3	1	000				
.									VOLATILES			z				U)		ESTIC	S						
				-				P.E.	NATED		S:	EL SCA	SOLIN	SEL	=	LATILE		MATED	E METALS	#	مز				•
10.	SAMPLE 1.D.	DATE	TIME	SAMPLE DESCRIPTION :	S S	WATER	THER	NUMBER OF CONTAINERS	HALOGENATED N 601/8010	238020	VOLATILES 624/8240	CFF	TPH - GASOLINE	TPH - DIESEL	74 - 41E	SEMI-VOLATILES 625/8270	PCB's FORMORO	CHLORINATED PESTICIDES 608/808C		12/	lol			REMARKS	,
_	850/892-1			Sedinel	<u>*</u>	3	0	23 i	±8	യമ	≥8	ĪÖ	F	F.	=	0.08	1/	28	1	1/	<u> </u>		1	glost-	
	1301612-1 13501692-1			Sed word	1			_ 									-;-	10	1	<u> </u>			_	plastic no	· Pola:
	3501872-1	8.11		Coderel	1			- <u>'</u> -	1											† :				Flostic -qu	
	9501192-2			Sedment	7			/				******			- "	V	"	1						glass	7.5
	R101512-2			'Sederat	1			1										_	./	-			_	Mastie m	elclo
- 1	1501992-2	•		Sedered	1			1													11			plastic-gr	
				4																				11 3	
					·		·																		
																			<u> </u>	_					
												- -				ļ. 		ļ		ļ					
															ļ <u>-</u> -		ļ	ļ	ļ	ļ					
							_							 			-	 	-	-					
					-									ļ <u>.</u>			 			 -		 -	_		
ECINC	DISHER BY //	Ll		COMPANY		l			DATE	/TIME			İ	<u>.</u>	<u> </u> 	RECE	J.) ÎY€D	BY		<u>L</u>			C	OMPANY	
4	mil Kalan	COL		١	· 		·'_					/	5/4	l. 	1	50	me	2 رو	La	4	<u></u>		(201	
ELINC	UISHED'BY			COMPANY	•				DATE	E/TIME	•					HECE	IVED	BY	•				C	OMPANY	
ELINC	UISHED BY			COMPANY					DATE	TIME	 -					RECE	IVED	BY					C	OMPANY	· · · · · · · · · · · · · · · · · · ·